## Enantioselective $\alpha$ -Fluorination and Chlorination of $\beta$ -Ketoesters by Cobalt Catalyst

Motoi Kawatsura,\* Shunsuke Hayashi, Yuji Komatsu, Shuichi Hayase, and Toshiyuki Itoh\* Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Kovama, Tottori 680-8552

(Received February 12, 2010; CL-100153; E-mail: kawatsur@chem.tottori-u.ac.jp, titoh@chem.tottori-u.ac.jp)

We demonstrated the cobalt-catalyzed asymmetric  $\alpha$ -fluorination and  $\alpha$ -chlorination of  $\beta$ -ketoesters. Both reactions were achieved using a catalytic amount of Co(acac)<sub>2</sub> with (*R*,*R*)-Jacobsen's salen ligand;  $\alpha$ -fluorinated or  $\alpha$ -chlorinated products were thus obtained with a good enentioselectivity.

Chiral fluorinated organic compounds are well recognized as important materials in the field of biological and medicinal chemistry.<sup>1</sup> Recently, the transition metal catalyzed highly enantioselective  $\alpha$ -fluorination of  $\beta$ -ketoesters has been achieved by several groups.<sup>2</sup> For example, Togni reported the [TiCl<sub>2</sub>(TADDOLato)]-catalyzed reaction with Selectfluor, and they also discovered a ruthenium catalyst system.<sup>3</sup> Sodeoka demonstrated a Pd/BINAP-catalyzed system with N-fluorobenzenesulfonimide (NFSI).<sup>4</sup> Cahard also described that Cu/Box is an effective catalyst for the  $\alpha$ -fluorination of  $\beta$ -ketoesters.<sup>5</sup> Furthermore, Shibata and Toru attained a high enantioselectivity with a Ni/dbfox catalyst.<sup>6</sup> More recently, a Ni or Mg/N,N,Ntridentate ligand system was reported by Shibatomi and Iwasa,<sup>7</sup> and chiral rare earth perfluorinated organophosphate catalysts were developed by Inanaga.8 Despite these pioneering studies of enantioselective fluorination, the development of a new catalyst system is still required in this area. Recently, we have been interested in the development of the cobalt-catalyzed asymmetric reaction, and realized the cobalt/pybox-catalyzed asymmetric conjugate addition of thiols to  $\alpha,\beta$ -unsaturated carbonyl compounds.<sup>9</sup> During the course of the cobalt-catalyzed asymmetric reactions, we found that the cobalt/Jacobsen's salen ligand system exhibited a high enantioselectivity for the  $\alpha$ -fluorination of  $\beta$ -ketoesters.

We examined the reaction of ethyl 2-oxocyclopentanecarboxylate (1a) with NFSI using cobalt catalysts.<sup>10</sup> Based on the results of our previous chiral cobalt catalyzed asymmetric reaction,<sup>9</sup> we tested the  $\alpha$ -fluorination reaction of  $\beta$ -ketoesters by  $Co(ClO_4)_2 \cdot 6H_2O$  with (S,S)-ip-pybox. However, the reaction produced an  $\alpha$ -fluorinated product with a poor result; i.e., a 55% yield and 25% enatiomeric excess (Table 1, Entry 1). Reinvestigation of the effective combination of a cobalt salt and chiral ligand revealed that  $Co(acac)_2$  with the (R,R)-Jacobsen's salen ligand (L2) exhibited a higher enatiomeric excess (60% ee) with almost the same yield (60%) (Entry 4). The enantioselectivity was improved when diethyl ether was used as the solvent, but the yield had decreased to 41% (Entry 5). Fortunately, both the chemical yield and enantioselectivity of the desired products significantly increased at lower reaction temperature (Entries 6 and 7), and the best result was obtained at -20 °C (84% isolated yield with 89% ee). According to the reported results of the metal-catalyzed  $\alpha$ -fluorination of cyclic  $\beta$ -ketoesters by other groups, it seems that moderately bulky groups, such as tertbutyl, at the ester functionality are necessary to attain high **Table 1.** Cobalt catalysts for the  $\alpha$ -fluorination of ethyl 2-oxocyclopentanecarboxylate  $(1a)^a$ 



|       | L1: ( <i>S,S</i> )- <i>ip</i> -pybox | L2: (R,R)-Jacobsen's salen ligand |                      |                          |                   |
|-------|--------------------------------------|-----------------------------------|----------------------|--------------------------|-------------------|
| Entry | [Co]                                 | L                                 | Solv./<br>Temp (°C)  | Yield<br>/% <sup>b</sup> | ee/% <sup>c</sup> |
| 1     | $Co(ClO_4)_2 \cdot 6H_2O$            | L1                                | THF/rt               | 55                       | 25                |
| 2     | $Co(ClO_4)_2 \cdot 6H_2O$            | L2                                | THF/rt               | 50                       | 8                 |
| 3     | $Co(acac)_2$                         | L1                                | THF/rt               | 86                       | 34                |
| 4     | $Co(acac)_2$                         | L2                                | THF/rt               | 60                       | 60                |
| 5     | $Co(acac)_2$                         | L2                                | Et <sub>2</sub> O/rt | 41                       | 73                |
| 6     | $Co(acac)_2$                         | L2                                | $Et_2O/0$            | 68                       | 85                |
| 7     | $Co(acac)_2$                         | L2                                | $Et_2O/-20$          | 84                       | 89                |

<sup>a</sup>Reaction conditions: **1a** (0.32 mmol), [Co] (0.032 mmol), **L1** or **L2** (0.032 mmol), NFSI (0.45 mmol), solvent (1.0 mL). <sup>b</sup>Isolated yield. <sup>c</sup>Enantiomeric excess values were determined by GC analysis using Chiraldex G-TA.

enantioselectivity. Actually, most of the reports mainly examined the *tert*-butyl esters, and there are only two examples of the reaction of the ethyl ester,<sup>3c,8</sup> which is commercially available. To the best of our knowledge, the highest enantioselectivity reported for the reaction of **1a** was 76% ee, and it was attained using a scandium catalyst. It should be emphasized that our cobalt catalyst is superior to the scandium catalyst for the  $\alpha$ fluorination of the ethyl ester **1a** (89% ee, Entry 7).

We used the Co(acac)<sub>2</sub>/L2 catalyst for the  $\alpha$ -fluorination of other  $\beta$ -ketoesters. These results are summarized in Table 2. The ketoester **1b** (methyl ester) produced the desired  $\alpha$ -fluorinated product with 90% ee (Entry 1). The reaction of **1c** (*tert*-butyl ester) also exhibited a good enantioselectivity (86% ee). On the other hand, reduced enantioselectivities were obtained for the reaction of other cyclic  $\beta$ -ketoesters containing six- or sevenmembered rings (**1d–1f**) (Entries 3–5). We further examined the reaction of acyclic  $\beta$ -ketoester **1g**, but both yield and enantioselectivity were moderate (Entry 6).<sup>11</sup>

Furthermore, the Co(acac)<sub>2</sub>/L2 catalyst worked as a good system for the the enantioselective  $\alpha$ -chlorination of 1a with CF<sub>3</sub>SO<sub>2</sub>Cl (TFSC) (Scheme 1).<sup>6,12</sup> The reaction was carried out

| 1b: n =<br>1c: n =<br>1d: n =<br>1d: n =<br>1f: n =<br>0<br>Me | $O = 1, R = Me$ $i = 1, R = ^{t}Bu$ $i = 2, R = Me$ $i = 2, R = Et$ $i = 3, R = Me$ $O = 0$ $O = 0$ $Me$ $D = 1$ | 10 mol% Co(ac<br>10 mol% <b>L2</b><br>NFSI (1.4 equiv<br>Et <sub>2</sub> O, 12 h | cac) <sub>2</sub><br>v)<br>Me<br>Me | O<br>F<br>2b-f<br>O<br>F<br>O<br>Et<br>F<br>2g |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|
| Entry                                                          | 1                                                                                                                | Temp/°C                                                                          | Yield/% <sup>b</sup>                | ee/% <sup>c</sup>                              |
| 1                                                              | 1b                                                                                                               | -20                                                                              | 74                                  | 90                                             |
| 2                                                              | 1c                                                                                                               | -20                                                                              | 65                                  | 86                                             |
| 3                                                              | 1d                                                                                                               | 0                                                                                | 65                                  | 79                                             |
| 4                                                              | 1e                                                                                                               | 0                                                                                | 65                                  | 75                                             |
| 5                                                              | 1f                                                                                                               | 0                                                                                | 75                                  | 79                                             |
| 6                                                              | 1g                                                                                                               | rt                                                                               | 64                                  | 71                                             |

Table 2. Cobalt-catalyzed  $\alpha$ -fluorination of  $\beta$ -ketoesters (1b-1g)<sup>a</sup>

<sup>a</sup>Reaction conditions:  $\beta$ -ketoester (0.32 mmol), Co(acac)<sub>2</sub> (0.032 mmol), L2 (0.032 mmol), NFSI (0.45 mmol), diethyl ether (1.0 mL). <sup>b</sup>Isolated yield. <sup>c</sup>Enantiomeric excess values were determined by GC analysis with a Chiraldex G-TA for 1b and 1d–1g, or chiral HPLC using Daicel CHIRALPAK AD-H for 1c.





in toluene at room temperature, and the desired chlorinated product was obtained with a 75% ee, but the yield was insufficient (16%). Fortunately, both the yield and enantiose-lectivity increased to 62% and 88% ee by the addition of molecular sieves 4A.

In conclusion, we demonstrated the cobalt-catalyzed asymmetric  $\alpha$ -fluorination and  $\alpha$ -chlorination of  $\beta$ -ketoesters. Both of these desired reactions were catalyzed by a chiral cobalt catalyst, which was prepared from Co(acac)<sub>2</sub> with (*R*,*R*)-Jacobsen's salen ligand, and the  $\alpha$ -fluorinated or  $\alpha$ -chlorinated products were obtained with good enantioselectivities.

## **References and Notes**

- a) B. E. Smart, *J. Fluorine Chem.* 2001, 109, 3. b) J.-A. Ma, D. Cahard, *Chem. Rev.* 2004, 104, 6119. c) H. Ibrahim, A. Togni, *Chem. Commun.* 2004, 1147.
- 2 a) N. Shibata, T. Ishimaru, S. Nakamura, T. Toru, J. Fluorine

*Chem.* **2007**, *128*, 469. b) V. A. Brunet, D. O'Hagan, *Angew. Chem.*, *Int. Ed.* **2008**, *47*, 1179.

- 3 a) L. Hintermann, A. Togni, *Angew. Chem., Int. Ed.* 2000, *39*, 4359. b) S. Piana, I. Devillers, A. Togni, U. Rothlisberger, *Angew. Chem., Int. Ed.* 2002, *41*, 979. c) M. Althaus, C. Becker, A. Togni, A. Mezzetti, *Organometallics* 2007, *26*, 5902.
- 4 a) Y. Hamashima, K. Yagi, H. Takano, L. Tamás, M. Sodeoka, J. Am. Chem. Soc. 2002, 124, 14530. b) Y. Hamashima, H. Takano, D. Hotta, M. Sodeoka, Org. Lett. 2003, 5, 3225.
- 5 a) J.-A. Ma, D. Cahard, *Tetrahedron: Asymmetry* 2004, 15, 1007. b) J.-A. Ma, D. Cahard, *J. Fluorine Chem.* 2004, 125, 1357.
- 6 N. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura, T. Toru, S. Kanemasa, *Angew. Chem.*, *Int. Ed.* 2005, 44, 4204.
- 7 a) K. Shibatomi, Y. Tsuzuki, S. Nakata, Y. Sumikawa, S. Iwasa, *Synlett* 2007, 551. b) K. Shibatomi, Y. Tsuzuki, S. Iwasa, *Chem. Lett.* 2008, 37, 1098.
- 8 S. Suzuki, H. Furuno, Y. Yokoyama, J. Inanaga, *Tetrahe-dron: Asymmetry* 2006, 17, 504.
- 9 M. Kawatsura, Y. Komatsu, M. Yamamoto, S. Hayase, T. Itoh, *Tetrahedron* 2008, 64, 3488.
- Typical procedure: A solution of Co(acac)<sub>2</sub> (8.2 mg, 10 0.032 mmol), (*R*,*R*)-Jacobsen's salen ligand (17.5 mg, 0.032 mmol) and NFSI (141 mg, 0.45 mmol) in anhydrous diethyl ether (1.0 mL) was stirred at -20 °C for 10 min. To this solution was added a  $\beta$ -ketoester **1a** (50 mg, 0.32 mmol), then stirred for 12h. Saturated NH<sub>4</sub>Cl was added for quenching, and the water layer was extracted with diethyl ether  $(1.0 \text{ mL} \times 3)$ . The combined organic layers were washed with brine and dried over MgSO<sub>4</sub>. Removal of the solvent, followed by flash column chromatography (hexane/ ethyl acetate = 2/1), afforded the desired product **2a** as a colorless oil (47 mg, 84%). The enantiomeric purity was determined to be 89% ee by GC analysis with a Chiraldex G-TA (initial temperature 60 °C, final temperature 165 °C, rate 3 °C min<sup>-1</sup>, inj. temperature 160 °C, det. temperature 100 °C:  $t(R) = 26.0 \text{ min}, t(S) = 30.5 \text{ min}). [\alpha]_D^{25} 85.8 (c \ 0.56, \text{CHCl}_3)$ (89% ee) {lit.<sup>3c</sup>  $[\alpha]_D^{25}$  169.0 (c 1.53, CHCl<sub>3</sub>) (99.7% ee)}. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  1.32 (t, J = 7.2 Hz, 3H), 2.01-2.19 (m, 2H), 2.28-2.39 (m, 1H), 2.48-2.60 (m, 3H), 4.30 (q, J = 7.2 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 14.00, 18.02 (d, J = 2.9 Hz), 33.88 (d, J = 21.1 Hz), 35.68, 62.33, 94.61 (d, J = 199.6 Hz), 167.44 (d, J = 26.8 Hz), 207.52 (d, J = 16.2 Hz). <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>, internal standard: C<sub>6</sub>F<sub>6</sub>):  $\delta$  -2.39 (t, *J* = 18.8 Hz).
- 11 We also examined the fluorination reactions of 2-methoxycarbonyl-1-indanone and 2-ethoxycarbonyl-1-indanone by Co(acac)<sub>2</sub>/L2 catalyst, but the enantioselectivities were 55% ee (98% yield) and 50% ee (94% yield), respectively.
- a) M. Marigo, N. Kumaragurubaran, K. A. Jørgensen, *Chem.—Eur. J.* 2004, *10*, 2133. b) H. Ibrahim, F. Kleinbeck, A. Togni, *Helv. Chim. Acta* 2004, *87*, 605. c) L. Hintermann, A. Togni, *Helv. Chim. Acta* 2000, *83*, 2425.